Software Collaboration Tools and the Salish Sea MEOPAR Project

Doug Latornell Susan Allen, Nancy Soontiens, Kate Le Souëf

Earth, Ocean and Atmospheric Sciences University of British Columbia

salishsea.eos.ubc.ca/nemo.html

MEOPAR

- Marine Environmental Observation Prediction and Response
- Network of Centres of Excellence
- meopar.ca

NEMO

- Nucleus for European Modelling of the Ocean
- www.nemo-ocean.eu
- Ocean model component of the DFO/EC/DND CONCEPTS program
- Regional scale configuration
- Atmospheric forcing from Environment Canada models

Salish Sea

- British Columbia mainland south coast
- Strait of Georgia
- Strait of Juan de Fuca
- Puget Sound
- Johnstone Strait

Salish Sea NEMO Model

- Resolution: ~500m horizontal; 1m to 20m depth
- Time Scale: 1-10 days
- Presently evaluating model skill via hindcast runs:
 - Tidal amplitude and phase
 - Storm surge events
 - Stratification and deep water renewal over annual cycle
- Nancy Soontiens' talk -- Thu at 12:15 in Parent room

Online Collaboration

- Software Tools + Web Services
- Instantly share documentation, results, tools & code among research team
- Share results with collaborators and stakeholders
- Publish our experience with NEMO for other users

Think of the Researchers...

Think of the Researchers...

- Research productivity, not cool tools
- New things to learn, and habits to change or form
- Tools need to be:
 - Powerful
 - Low cognitive load
 - Widely applicable, reusable

Web Services

Documentation Tools

Analysis Tools

Coordination Tools

Automation Tools

Distributed Version Control

Web Services

bitbucket.org readthedocs.org nbviewer.ipython.org drive.google.com

Documentation Tools

reStructuredText Sphinx **Analysis Tools**

Python IPython Notebook Markdown **Coordination Tools**

Google Drive

Automation Tools

Python

Distributed Version Control

Mercurial (hg)

Tools:
hg
reStructuredText
Sphinx
Python
IPython Notebook
Markdown
LaTeX

hg Repositories:

docs tools analysis salishsea-site results

- NEMO-code
- NEMO-forcing
 SS-run-sets

..

hg push

readthedocs.org/
salishsea-meopar-docs
salishsea-meopar-tools

Web Services

bitbucket.org/salishsea/

hg pull

Team Members

Other

The Internet

Researcher's Computer

Google Drive

URLs

nbviewer.ipython.org/

Documentation

- Lots of good reasons to write documentation
- ...And usually a few more reasons why not to...
- Describe NEMO configuration experience for future users
- Describe working environment for new team members
- Be kind to our future selves

Tools:
hg
reStructuredText
Sphinx
Python
IPython Notebook

Markdown

LaTeX

hg Repositories:

docs

tools analysis salishsea-site results

- **₽** NEMO-code
- NEMO-forcing SS-run-sets

. . .

hg push

readthedocs.org/ salishsea-meopar-docs salishsea-meopar-tools Web Services bitbucket.org/salishsea/ hg pull

Other Team Members

The Internet

Researcher's Computer

Google Drive

URLs

nbviewer.ipython.org/

50

50

50

50

50

50

50

50

50

50

50

50

55

50

45

40

35

30

25

20

25

30

25

30

100

100

100

100

100

100

100

100

100

100

100

100

complete

complete

complete

complete

complete

complete

complete

complete

complete

blew up off Stuart

blew up off Pender

blew up BP Mouth

Salish

Sep 23

Sep 24

Sep 25

Sep 26

Sep 27

Sep 28

Sep 29

Sep 30

Sep 30

Sep 30

Oct 1-2

Oct 1

Set-up, Initial Conditions, Forcing,

Salish Sea Run Sets Files

Output Server Configuration

NEMO-3.1 and CONCEPTS-110

etc. Files

Spin-up Runs

Tidal evaluation

Rivers

Stability

Storm Surges

Read the Docs

Turbulence and Viscosity

Salish Sea MEOPAR Project

Things We Learned About NEMO

v: latest -

Reference Repos

Simple Docs Update

```
$ cd docs
$ edit code-notes/salishsea-nemo/spinup.rst
...
```


Simple Docs Update

```
$ cd docs
$ edit code-notes/salishsea-nemo/spinup.rst
$ hg commit -m"Add info re: recent spin-up runs."
$ hg push
```

Tools:
hg
reStructuredText
Sphinx
Python
IPython Notebook

Markdown

LaTeX

hg Repositories:

docs

tools analysis salishsea-site results

- **₽** NEMO-code
- NEMO-forcing SS-run-sets

. . .

hg push

readthedocs.org/ salishsea-meopar-docs salishsea-meopar-tools Web Services bitbucket.org/salishsea/ hg pull

Other Team Members

The Internet

Researcher's Computer

Google Drive

URLs

nbviewer.ipython.org/

50

50

50

50

50

50

50

50

50

50

50

50

55

50

45

40

35

30

25

20

25

30

25

30

100

100

100

100

100

100

100

100

100

100

100

100

complete

complete

complete

complete

complete

complete

complete

complete

complete

blew up off Stuart

blew up off Pender

blew up BP Mouth

Salish

Sep 23

Sep 24

Sep 25

Sep 26

Sep 27

Sep 28

Sep 29

Sep 30

Sep 30

Sep 30

Oct 1-2

Oct 1

Set-up, Initial Conditions, Forcing,

Salish Sea Run Sets Files

Output Server Configuration

NEMO-3.1 and CONCEPTS-110

etc. Files

Spin-up Runs

Tidal evaluation

Rivers

Stability

Storm Surges

Read the Docs

Turbulence and Viscosity

Salish Sea MEOPAR Project

Things We Learned About NEMO

v: latest -

Reference Repos

Docs Update with Preview

\$ hg push

\$ hg commit -m"Change to use new `salishsea run` command."

Widely Applicable, Reusable

Pre-processing and Analysis

- Preparation of files for boundary conditions and forcing
- Analysis of model results for verification and new insights
- Mixture of narrative, math, code, plots, animations, ...
- Scientific Python libraries provide the platform
- IPython Notebook enables us to keep narrative, math, code, plots, etc. together, and share with minimal effort

Tools:
hg
reStructuredText
Sphinx
Python
IPython Notebook
Markdown
LaTeX

hg Repositories:

tools analysis

salishsea-site results

- **₽** NEMO-code
- NEMO-forcing SS-run-sets

. . .

hg push

readthedocs.org/ salishsea-meopar-docs salishsea-meopar-tools Web Services bitbucket.org/salishsea/ hg pull

Researcher's Computer

URLS

Google Drive

URLs

nbviewer.ipython.org/

Other Team Members

The Internet

IP[y]: Notebook

johnstone_strait_tides Last Checkpoint: May 05 17:38 (autosaved)

File

Edit

View

Cell

Insert

Kernel

Help

0

Following the approach used to rotate the Webtide tidal constituents, we can do the following:

- assume the postive along strait direction is approximately 10° measured clockwise from East
- 'up' in NEMO is rotated 29° counter-clockwise of North
- 'across' in NEMO is rotated 29° counter-clockwise of East
- the angle of rotation between along-strait direction and 'across' in NEMO is therefore $\theta=29^{\circ}+10^{\circ}=39^{\circ}$
- neglect across-strait velocity (i.e. $v_a = 0$, $\phi_v = 0$)
- u_a and ϕ_u are the depth averaged amplitude and phase at each station (calculated above)
- following the approach described in the docs docs/tides/tides data acquisition:

so for u:

$$Z1 = u_a \cos \theta \cos \phi_u$$

$$Z2 = u_a \cos \theta \sin \phi_u$$

and for ν :

$$Z1 = -u_a \sin \theta \cos \phi_u$$

$$Z2 = -u_a \sin \theta \sin \phi_u$$

Tools:
hg
reStructuredText
Sphinx
Python
IPython Notebook
Markdown
LaTeX

hg Repositories:

tools analysis

salishsea-site results

- **₽** NEMO-code
- NEMO-forcing SS-run-sets

. . .

hg push

readthedocs.org/ salishsea-meopar-docs salishsea-meopar-tools Web Services bitbucket.org/salishsea/ hg pull

Researcher's Computer

URLS

Google Drive

URLs

nbviewer.ipython.org/

Other Team Members

The Internet

>>

comp_wlev_harm-wNorth.ipynb

Multi-tides w Fit.ipynb

comp wlev harm compositerun.ipynb

Tools:
hg
reStructuredText
Sphinx
Python
IPython Notebook
Markdown
LaTeX

hg Repositories:

docs tools analysis salishsea-site results

- NEMO-code
- NEMO-forcing
 SS-run-sets

. . .

hg push

readthedocs.org/ salishsea-meopar-docs salishsea-meopar-tools

Web Services

bitbucket.org/salishsea/

hg pull

Other Team Members

The Internet

Researcher's Computer

Doug Latornell (@dlatornell >>)
Susan Allen
Nancy Soontiens

Google Drive

URLs

nbviewer.ipython.org/