
Software Version Control
and Automation

TU Delft CITG Lunch Seminar
31-Mar-2014

Doug Latornell
Earth, Ocean & Atmospheric Sciences

University of British Columbia, Vancouver, Canada
dlatornell@eos.ubc.ca

http://douglatornell.ca
@dlatornell

Part 1 - Version Control

● What is it?
● Why use it?
● What for?
● Key Concept
● History, Tools, Pros and Cons
● Mercurial and Git
● Key Disciplines
● Tagging, Reverting, and Updating Backward
● GUIs
● Collaboration
● Bitbucket and GitHub

What Is Version Control (VC)?

Use software tools to keep a running record of 1 or more files.

What Is VC?

Use software tools to keep a running record of 1 or more files.

Why You Should Use VC?

●Lets you revert to earlier versions of your work
●Provides a record of what changed when
●Lets you mark significant points in time
●Allows you to play "what-if?"
● Facilitates organized collaboration (with your future self, as

well as with other people)

What You Should Use VC For

●Model Code
●Matlab Scripts
●Plotting Scripts
●Processed Data Files & Scripts That Made Them
●Complicated Marking Spreadsheets (especially if shared)
●Thesis
●Papers
●ToDo List

What You Should Use VC For

●Model Code
●Matlab Scripts
●Plotting Scripts
●Processed Data Files & Scripts That Made Them
●Complicated Marking Spreadsheets (especially if shared)
●Thesis
●Papers
●ToDo List

Key Concept

●Data differencing

●Unix utilities diff and patch

●Given a file, and a complete set of diffs between 1 state
and another, any intermediate state for which there is a
diff can be reconstructed.

+ =+

Initial File Diff #1

Diff #2

+ =+

Version Control Tools
http://en.wikipedia.org/wiki/Revision_control

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Revision_control

Ad hoc:

Version Control Tools
http://en.wikipedia.org/wiki/Revision_control

Mists of time...
SCCS
RCS

Ad hoc
thesis2.tex, JFM-21mar.doc
pooh.txt, ...

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Revision_control

Version Control Tools
http://en.wikipedia.org/wiki/Revision_control

Mists of time...
SCCS
RCS

Ad hoc
thesis2.tex, JFM-21mar.doc
pooh.txt, ...

Proprietary:
Visual SourceSafe
Perforce
BitKeeper

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Revision_control

Version Control Tools
http://en.wikipedia.org/wiki/Revision_control

Mists of time...
SCCS
RCS

Old School (Client/Server):
CVS (Concurrent Versions System)

SVN (Subversion)

Ad hoc
thesis2.tex, JFM-21mar.doc
pooh.txt, ...

Proprietary:
Visual SourceSafe
Perforce
BitKeeper

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Revision_control

Version Control Tools
http://en.wikipedia.org/wiki/Revision_control

Mists of time...
SCCS
RCS

Old School (Client/Server):
CVS (Concurrent Versions System)

SVN (Subversion)

Ad hoc
thesis2.tex, JFM-21mar.doc
pooh.txt, ...

Proprietary:
Visual SourceSafe
Perforce
BitKeeper

Distributed & Open Source:
GNU arch
Darcs
Monotone
Bazaar

Git
Mercurial

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Revision_control

Pros and Cons
Ad Hoc
●Easy to do, if you think of it
●Works best if you have a system
○stuff1.txt, stuff2.f90, stuff4.m probably isn't

a good enough system
●Hard to provide yourself with enough metadata

Pros and Cons
Client/Server
●Good for centrally controlled project; e.g. ROMS
●Work required to set up and administer
●Committing feels like a big deal
●Requires network connection

Distributed
●Almost zero set up
●No network required
●Every copy of a repository is a full backup
●Scalable to big projects
●Usable for central control

Mercurial

http://mercurial.selenic.com/
http://mercurial.selenic.com/wiki/Tutorial
Mercurial: The Definitive Guide http://hgbook.red-bean.com/

$ hg help

http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/wiki/Tutorial
http://mercurial.selenic.com/wiki/Tutorial
http://hgbook.red-bean.com/

Git

http://git-scm.com/
http://git-scm.com/documentation
Pro Git http://git-scm.com/book

$ git help

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/documentation
http://git-scm.com/documentation
http://git-scm.com/book

hg Commands to Start a Project

$ hg init myhgproject
$ cd myhgproject

 add/create some files

$ hg add
$ hg commit -m "Initial commit."

git Commands to Start a Project

$ git init mygitproject
$ cd mygitproject

 add/create some files

$ git add
$ git commit -m "Initial commit."

Key Disciplines

Commit Early, Commit Often
●Small incremental changes are easier to understand
●You can't revert to a diff that doesn't exist

Make Commit Messages Informative
●1st line is a summary; sometimes that's all you need
●Add more details in subsequent paragraphs
●Use present tense; e.g. "Fix typos."
● See http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

hg Commands to See What's Going On
$ hg log

$ hg diff

Show differences between revisions

Print revision history of files or whole repository

N.B. There are lots of options for each command
 See hg help command

$ hg status

Show status of files in repository (e.g. modified, added,
removed, missing, not tracked)

Tags

$ hg tags

$ hg tag -m"1st submission to JGR." jgr_1

Tag the current revision as jgr_1

Print a list of the tags in the repository

Tags are symbolic names for specific revisions in the
repository. Most often you assign a tag to the current revision
(tip) to mark a significant event.

Reverting
$ hg revert -r67 paper.tex

Revert paper.tex to the contents it had at revision
67; paper.tex will be marked as modified

$ hg revert --all

Discard all changes since last commit

hg revert changes file contents, but not the working
directory parents, so you have to commit the reverted file(s)

Use revert if you made a mistake and want to go back
(but repository history is always preserved)

Updating Backward

$ hg update -d"<2010-10-01"

Update the repository to the last revision prior to 2010-10-01

$ hg update -r jgr_1

Update the repository to revision jgr_1

hg update changes file contents, and the working directory
parents, so there are no changes to commit

Jumping around in time

GUIs

Mercurial:
http://mercurial.selenic.com/wiki/OtherTools
http://tortoisehg.bitbucket.org/

Git:
http://git-scm.com/downloads/guis
http://gitx.frim.nl/

http://mercurial.selenic.com/wiki/OtherTools
http://tortoisehg.bitbucket.org/
http://tortoisehg.bitbucket.org/
http://git-scm.com/downloads/guis
http://gitx.frim.nl/

hg Commands to Join a Shared Project

$ hg clone project_repo
$ cd project

 edit some files

$ hg commit -m "My changes."
$ hg push

project_repo can be a path, or a URL (http, https, ssh)

git Commands to Join a Shared Project

$ git clone project_repo
$ cd project

 edit some files

$ git add <files>
$ git commit -m "My changes."
$ git push

project_repo can be a path, or a URL (http, https, ssh)

Collaboration

Mercurial has a built-in web server

Okay for quick, ad-hoc repo sharing
A little more complicated if you need 24/7/365 uptime

Git has instaweb and daemon commands
but they are more complicated right from the start

$ hg serve

Bitbucket and GitHub

https://bitbucket.org/
● Mercurial or Git
● Free unlimited public

repos
● Free private repos with

5-8 collaborators;
unlimited with
educational identity

● Issue trackers, wikis
● Forking, pull requests

https://github.com/
● Git only
● Free unlimited public

repos
● Monthly fee for private

repos

● Issue trackers, wiki
● Forking, pull requests
● More buzz

https://bitbucket.org/
https://bitbucket.org/
https://github.com/
https://github.com/

Bitbucket and GitHub

Getting Started Guides:

Bitbucket 101

GitHub Bootcamp

https://confluence.atlassian.com/display/BITBUCKET/Bitbucket+101
https://confluence.atlassian.com/display/BITBUCKET/Bitbucket+101
https://help.github.com/categories/54/articles
https://help.github.com/categories/54/articles

Part 2 - Software Automation

● Python and the scientific Python stack
● SoG-bloomcast - an automation example
● Requests - HTTP for humans
● Parsing web data - XML, HTML, CSV, netCDF, GIS
● Spawning sub-processes
● Vectorized and N-dimensional array calculations
● Graphs and figures
● String interpolation and templating
● Shell scripts and cron jobs

Python

● http://python.org
● Created in 1989 by Guido van Rossum
● Clear, readable syntax
● General purpose language
● Well documented, free, and cross-platform
● Expressive
● Dynamic execution
● Very high level, dynamic data types
● Extensive standard library, and ecosystem of 3rd-party

packages
● Easily extended in C and C++

http://python.org
http://python.org

Python for Engineering & Science

● http://scipy.org
● NumPy - N-dimensional arrays
● SciPy - Library of fundamental scientific algorithms (in

many cases just Python wrappers around time-tested
Fortran and C implementations)

● Matplotlib - 2D plotting
● IPython Notebook - enhanced Python shell in the browser

with rich text, math notation, inline plots, ...
● The list goes on…
● Curated distributions:

○ Anaconda from Continuum Analytics
○ Canopy from Enthought

http://scipy.org
http://scipy.org
http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://matplotlib.org/
http://ipython.org/notebook.html
https://store.continuum.io/cshop/anaconda/
http://continuum.io/
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
https://www.enthought.com/
https://www.enthought.com/products/canopy/

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Requests - HTTP for Humans

http://docs.python-requests.org/en/latest/

url = 'http://climate.weather.gc.ca/climateData/...
params = {

'station_id': 6831,
'format': 'xml',
'Year': 2014,
'Month': 3,
'Day': 29,
...

}
response = requests.get(url, params=params)
print(response.text)

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/

Requests - With Session Data

with requests.session() as s:
s.post(disclaimer_url, data='I Agree')
time.sleep(5)
response = s.get(data_url, params=params)

print(response.text)

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Data Processing & Transformation

● XML
○ Python standard library: xml.etree.ElementTree
○ lxml (if you need to do lots, and do it faster)

● HTML (web scraping)
○ BeautifulSoup
○ scrapy

● CSV
○ numpy.genfromtxt

● netCDF
○ python-netCDF4

● GIS
○ GDAL/OGR Bindings

http://docs.python.org/library/xml.etree.elementtree.html
http://lxml.de/
http://lxml.de/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://scrapy.org/
http://scrapy.org/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html
http://code.google.com/p/netcdf4-python/
http://code.google.com/p/netcdf4-python/
http://trac.osgeo.org/gdal/wiki/GdalOgrInPython
http://trac.osgeo.org/gdal/wiki/GdalOgrInPython

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Subprocess Module

cmd = 'nice -n 19 SOG < infile > outfile 2>&1'

proc = subprocess.Proc(cmd, shell=True)

while True:
if proc.poll() is None:

time.sleep(30)
else:

print('Done!)
break

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Vector and Array Calculations

Lots of libraries for doing scientific calculations

NumPy is generally the foundation

For specific application areas and algorithms:
● SciPy
● Pandas
● SciKits

http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
https://scikits.appspot.com/
https://scikits.appspot.com/

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Matplotlib

fig, ax_left = matplotlib.pyplot.subplots(1, 1)
ax_right = ax_left.twinx()
ax_left.plot(

nitrate.time,
nitrate.values,
color='blue')

ax_right.plot(
diatoms.time,
diatoms.values,
color='green')

ax_left.set_ytitle('Nitrate Concentration [uM N]')
ax_right.set_ytitle('Diatom Biomass [uM N]')
ax_left.set_xtitle('Year Day in 2014')

fig.savefig('nitrate_diatoms_timeseries.png')

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

String Interpolation & Templating
page_tmpl = """
<h1>Strait of Georgia Spring Bloom Prediction</h1>

The median bloom date calculate from a
{member_count} ensemble forecast is
{bloom_dates['median]:%Y-%m-%d}
...
"""
page = page_tmpl.format(

member_count=len(members),
bloom_dates=bloom_dates,
...

)
with open('page.html', 'rt') as f:

f.write(page)

String Interpolation & Templating

Templating libraries:
● Mako
● Jinja2
● many more

http://www.makotemplates.org/
http://www.makotemplates.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Subprocess (again)

rsync, scp, sftp, hg, git, ...

cmd = [
'rsync', '-Rtvhz',
'{}/./{}'.format(html_path, results_page),
'shelob:/www/salishsea/data/'

]
subprocess.check_call(cmd)

SoG-Bloomcast - An Automation Example

Daily, operational forecast of the 1st spring phytoplankton bloom in
the Strait of Georgia:

1. Get near real-time forcing data from web services
○ wind, weather, river flows

2. Process forcing data into format for model input
3. Run the SOG model 3 (or 30+) times concurrently
4. Analyze the run results to calculate the forecast bloom date as

well as early and late bounds
5. Create time series and depth profile plots
6. Render a results commentary and the plots as an HTML page via

a template
7. Push the HTML page to a web site

Do all of that while I get on with other research!

Shell Script and Cron Job

cron script to run SoG-bloomcast
#
make sure that this file has mode 744
and that MAILTO is set in crontab

VENV=/data/dlatorne/.virtualenvs/bloomcast
RUN_DIR=/data/dlatorne/SOG-projects/SoG-bloomcast/run
. $VENV/bin/activate && cd $RUN_DIR && \

$VENV/bin/bloomcast config.yaml

MAILTO=dlatorne@eos.ubc.ca

BLOOMCAST_DIR=/data/dlatorne/SOG-projects/SoG-bloomcast

m h dom mon dow command
 0 9 * * * $BLOOMCAST_DIR/cronjob.sh

Resources

● software-carpentry.org
● UBC EOAS Software Carpentry Bootcamp
● Salish Sea MEOPAR Project on Bitbucket
● Salish Sea MEOPAR Project Tools Documentation
● douglatornell.ca

http://software-carpentry.org/
http://software-carpentry.org/
http://douglatornell.github.io/2013-09-26-ubc/
http://douglatornell.github.io/2013-09-26-ubc/
https://bitbucket.org/salishsea/profile/repositories
https://bitbucket.org/salishsea/profile/repositories
http://salishsea-meopar-tools.readthedocs.org/
http://salishsea-meopar-tools.readthedocs.org/
http://douglatornell.ca/
http://douglatornell.ca/

